Improved Absolute Approximation Ratios for Two-Dimensional Packing Problems

نویسندگان

  • Rolf Harren
  • Rob van Stee
چکیده

We consider the two-dimensional bin packing and strip packing problem, where a list of rectangles has to be packed into a minimal number of rectangular bins or a strip of minimal height, respectively. All packings have to be non-overlapping and orthogonal, i.e., axisparallel. Our algorithm for strip packing has an absolute approximation ratio of 1.9396 and is the first algorithm to break the approximation ratio of 2 which was established more than a decade ago. Moreover, we present a polynomial time approximation scheme (PTAS) for strip packing where rotations by 90 degrees are permitted and an algorithm for two-dimensional bin packing with an absolute worst-case ratio of 2, which is optimal provided P 6= NP.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Structural Lemma in 2-Dimensional Packing, and Its Implications on Approximability

We present a new lemma stating that, given an arbitrary packing of a set of rectangles into a larger rectangle, a “structured” packing of nearly the same set of rectangles exists. This lemma has several implications on the approximability of 2-dimensional packing problems. In this paper, we use it to show the existence of a polynomial-time approximation scheme for 2-dimensional geometric knapsa...

متن کامل

Improved Approximation for Two Dimensional Strip Packing with Polynomial Bounded Width

We study the well-known two-dimensional strip packing problem. Given is a set of rectangular axis-parallel items and a strip of width W with infinite height. The objective is to find a packing of these items into the strip, which minimizes the packing height. Lately, it has been shown that the lower bound of 3/2 of the absolute approximation ratio can be beaten when we allow a pseudo-polynomial...

متن کامل

Approximation algorithms for scheduling and two-dimensional packing problems

This dissertation thesis is concerned with two topics of combinatorial optimization: scheduling and geometrical packing problems. Scheduling deals with the assignment of jobs to machines in a ‘good’ way, for suitable notions of good. Two particular problems are studied in depth: on the one hand, we consider the impact of machine failure on online scheduling, i.e. what are the consequences of th...

متن کامل

Improved Approximation for Vector Bin Packing

We study the d-dimensional vector bin packing problem, a well-studied generalization of bin packing arising in resource allocation and scheduling problems. Here we are given a set of d-dimensional vectors v1, . . . , vn in [0, 1] , and the goal is to pack them into the least number of bins so that for each bin B, the sum of the vectors in it is at most 1 in every dimension, i.e., || ∑ vi∈B vi||...

متن کامل

A (5/3 + ε)-Approximation for Strip Packing

We study strip packing, which is one of the most classical two-dimensional packing problems: given a collection of rectangles, the problem is to find a feasible orthogonal packing without rotations into a strip of width 1 and minimum height. In this paper we present an approximation algorithm for the strip packing problem with absolute approximation ratio of 5/3 + ε for any ε > 0. This result s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009